Feature fusion based on joint sparse representations and wavelets for multiview classification
نویسندگان
چکیده
Abstract Feature-level-based fusion has attracted much interest. Generally, a dataset can be created in different views, features, or modalities. To improve the classification rate, local information is shared among views by various methods. However, almost all methods use without considering their common aspects. In this paper, wavelet transform considered to extract high and low frequencies of as aspects rate. The method for decomposed parts based on joint sparse representation which number scenarios considered. presented approach tested three datasets. results obtained prove competitive performance terms datasets compared state-of-the-art results.
منابع مشابه
Rice Classification and Quality Detection Based on Sparse Coding Technique
Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملMedical Image Fusion Based on Feature Extraction and Sparse Representation
As a novel multiscale geometric analysis tool, sparse representation has shown many advantages over the conventional image representation methods. However, the standard sparse representation does not take intrinsic structure and its time complexity into consideration. In this paper, a new fusion mechanism for multimodal medical images based on sparse representation and decision map is proposed ...
متن کاملCombination Model for Sentiment Classification Based on Multi-feature Fusion
Sentiment classification is a way to analyze the subjective information in the text and then mine the opinion. This paper focuses on the word level sentiment classification. A combination model for word level sentiment classification based on multi-feature fusion is proposed in this paper. Firstly, different combinations models of various features are gotten and the Naive Bayes classifier is tr...
متن کاملTexture Classification Using Sparse Frame-Based Representations
A new method for supervised texture classification, denoted by frame texture classification method (FTCM), is proposed. The method is based on a deterministic texture model in which a small image block, taken from a texture region, is modeled as a sparse linear combination of frame elements. FTCM has two phases. In the design phase a frame is trained for each texture class based on given textur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Analysis and Applications
سال: 2022
ISSN: ['1433-755X', '1433-7541']
DOI: https://doi.org/10.1007/s10044-022-01110-2